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Introduction

Gait pattern, an objective indicator of physical health, cor-
relates with critical health outcomes including mortality and 

Abstract
Background: Gait analysis is a vital tool for evaluating overall health and predicting outcomes such as mortality and cognitive 
decline. This study explores how normal and obese BMI categories differently impact gait dynamics, addressing gaps in under-
standing body composition’s effect on specific gait parameters.

Research question: The primary objective is to investigate the variances in spatiotemporal gait parameters-specifically, gait 
speed, step length, cadence, and double support time—between normal and obese BMI groups, to understand the effects of 
obesity on gait.

Methods: This observational case-control study analyzed spatiotemporal gait metrics from 163 participants, using Inertial 
Measurement Units (IMUs) to collect data on various gait parameters. Statistical analyses explored the relationship between 
BMI categories and these metrics.

Results: No significant differences were found in gait speed, cadence, stride duration, or double support time between the 
normal and obese groups. However, significant differences were identified in age, hypertension prevalence, balance problems, 
and the incidence of falls, emphasizing the complex effects of obesity on factors influencing gait stability.

Significance: The study contributes to our understanding of obesity’s impact on gait by highlighting the need to consider asso-
ciated health and stability parameters. These findings prompt a re-evaluation of how BMI is integrated into clinical gait assess-
ments and emphasize the necessity for personalized healthcare strategies. Our research highlights the importance of future 
studies with larger, more diverse populations and a wider array of biomechanical measures to dissect the relationship between 
BMI, body composition, and gait dynamics.

cognitive decline [1]. It serves as a prognostic tool for predicting 
functional dependency, frailty, and overall well-being [2]. This 
study explores how body composition affects gait dynamics by 
comparing normal and obese BMI categories, focusing on gait 

Keywords: BMI; Gait dynamics; Spatiotemporal gait parameters; Mobility; Inertial Measurement Units (IMUs); Body composition 
analysis.
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speed, step length, cadence, and double support time. Given 
BMI’s influence on biomechanical functions and its association 
with mobility issues and diseases, we aim to investigate the ef-
fects of obesity on gait, noting that people with obesity may 
experience up to a 15% reduction in gait speed and a 25% de-
crease in step length compared to those with a normal BMI [3]. 
Through this analysis, we aim to uncover specific gait alterations 
linked to obesity and highlight potential direct healthcare inter-
vention targets that respect these findings, such as personalized 
physical therapy and targeted exercise programs. As described 
by Fonseka RD et al. (2023), utilizing a single-point wearable 
sensor to assess lumbar spine patients pre- and postoperatively 
highlighted the utility of gait metrics in evaluating surgical out-
comes and rehabilitation progress [4]. 

Obesity may impact gait dynamics by inducing central re-
sistance to hormones like leptin and insulin that may decrease 
energy expenditure and alter neuroendocrine connections es-
sential for gait coordination [5]. Moreover, the alteration in 
body weight distribution and biomechanics due to increased 
adipose tissue in obesity leads to changes in walking patterns 
and overall movement efficiency [6]. These factors contribute 
to a notable decrease in step length (5-10 cm) and cadence (up 
to 10 steps/min) in people with obesity, suggesting either ener-
gy-conservation tactics or fitness-related limitations in ability as 
the main drivers. Additionally, the extension of double support 
time by up to 2% during the gait cycle among people with obe-
sity hints at adaptations for added stability [3].

BMI serves as an indirect measure of health, classifying in-
dividuals into normal (BMI 18.5 to 24.9) and obese (BMI≥30) 
categories to assess body fat and health risks [7]. Mobbs (2020) 
has highlighted that obesity alters gait dynamics, leading to sig-
nificant modifications like reduced step count in comparison to 
those of normal BMI [8]. These changes emphasize the need 
for health strategies that address BMI differences, aiming to 
improve health outcomes and quality of life by addressing obe-
sity’s impact on mobility and chronic disease risks.

Although there are large volume references for cardiovascu-
lar health metrics across BMI categories [9], to our knowledge, a 
cohesive large-scale database correlating BMI with distinct gait 
patterns is not published. Our study seeks to establish a norma-
tive gait metric database for normal and obese BMI categories, 
offering healthcare practitioners valuable insights to assess and 
tackle mobility issues with BMI-adapted approaches. By map-
ping body composition against gait dynamics, our research aims 
to refine clinical evaluations and facilitate targeted health inter-
ventions that significantly enhance life quality, drawing from lit-
erature that documents observable gait differences across BMI 
groups [8,2].

Literature review: Research has shown that BMI influences 
gait dynamics in various ways. Browning and Kram (2007) dem-
onstrated that obese individuals exhibit increased energy ex-
penditure during walking due to altered biomechanics, leading 
to reduced gait efficiency [10]. Noted that children with obesity 
have different gait patterns, characterized by wider steps and 
lower gait speed, to maintain balance and stability [11]. Addi-
tionally, found that weight loss in obese patients led to signifi-
cant improvements in gait parameters, emphasizing the impact 
of body composition on mobility [12]. These studies highlight 
the importance of understanding how BMI affects gait to de-
velop effective interventions for improving mobility in obese 
individuals.

Subjects

The study’s cohort initially consisted of 320 normative sub-
jects. Exclusion criteria included: <18 years of age, non-binary 
gender identification, an inability to walk at least 50 meters in-
dependently, were not within either normal or obese BMI cat-
egories, pregnancy, or any medical conditions known to alter 
gait patterns, such as stroke, lumbar spinal stenosis, multiple 
sclerosis, or significant degenerative and/or rheumatological 
conditions affecting the hip, knee, and spine, a total of 214 par-
ticipants were included in the analysis for health-related and 
motion metrics variables.

Of the 320 patients recruited for the study, 163 remained 
following the application of exclusion criteria, representing 126 
individuals with a normal BMI and 37 with an obese BMI. 

Material and methods

Ethics

Approval was obtained from the South-Eastern Sydney Local 
Health District, New South Wales, Australia (HREC 17/184). All 
participants provided written informed consent.

Data collection

Following the acquisition of informed consent, participants 
underwent a structured interview to gather comprehensive 
demographic data including age, weight, height, BMI, smoking 
status and the presence of either hypertension or diabetes. The 
MetaMotionC Inertial Measurement Unit (IMU) by Mbientlab 
Inc (California, USA), equipped with a 16-bit triaxial accelerom-
eter (100Hz), gyroscope (100Hz), and magnetometer (0.3μT at 
25Hz) was used to derive gait data. This sensor was placed at 
the sternal angle of each participant to ensure optimal data 
capture (Figure 1). After a brief calibration period to ensure the 
IMU’s correct orientation, participants were instructed to walk 
a 50-meter distance along a flat, unobstructed concrete path-
way. This walk was performed unobserved to simulate natural 
walking conditions and pace.

Data capture was facilitated through a Bluetooth™ connec-
tion to an Android™ smartphone running the custom developed 
IMU Gait Recorder application. The raw data collected was then 
processed using IMUGaitPY, a custom coded Python package 
by the WAGAR Group (Sydney, Australia) for gait metric analy-
sis. This software was instrumental in extracting the relevant 
spatiotemporal metrics from the collected data, with further 
methodological details provided in Figure 2. Metrics collected 
included stride duration, cadence, double support time, gait 
speed and daily step count.

AI algorithm details: The AI algorithm utilized in IMUGaitPY 
involves a multi-layered approach combining data preprocess-
ing, feature extraction, and machine learning classification. The 
raw data undergoes noise filtering and segmentation to isolate 
individual gait cycles. Feature extraction focuses on key spa-
tiotemporal metrics, including stride duration, cadence, and 
double support time. These features are then analyzed using 
machine learning models such as Random Forest and Support 
Vector Machines (SVM) to classify gait patterns and predict de-
viations based on BMI categories. The algorithm’s performance 
is validated through cross-validation and evaluated using met-
rics such as accuracy, precision, and recall.
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Data analysis

This observational case-control study focuses on 163 partici-
pants across normal and obese BMI categories, aiming to anal-
yse spatiotemporal gait metrics and establish variances in gait 
parameters between the two groups. BMI was collected as a 
categorical variable and correlated with IMU derived gait met-
rics.

Inferential and descriptive analysis of data was carried out 
(Table 1). The distribution normality of our dataset was as-
sessed via Shapiro-Wilk and Kolmogorov-Smirnov tests. For nor-
mally distributed variables, we computed descriptive statistics, 
including means and standard deviations, to summarize central 
tendency and variability. Non-parametric tests (Mann-Whitney-
U) were performed for non-normal data with medians and In-
terquartile Ranges (IQRs) reported to present central tendency 
and variability. Associations among categorical variables were 
examined using the Chi-square test, while Pearson’s correlation 
coefficient facilitated the exploration of relationships between 
gait metrics and BMI categories. Statistical significance was es-
tablished at a p-value<0.05. All statistical analysis was executed 
using IBM SPSS software version 27.0 (Armonk, NY).

Results

Basic descriptive statistics are presented in Table 1. The 
analysis revealed statistically significant differences in age, hy-
pertension, problems with balance, and the incidence of falls 
between the normal and obese groups. Specifically, the obese 
group had a higher average age compared to the normal group 
(p<0.01*). However, there was no statistically significant differ-
ence in height between the groups (p=0.90824).

In evaluating gait metrics, including stride duration, cadence, 
gait speed, daily step count, and double support time, there 
were no significant differences between the normal and obese 
BMI categories (all p-values>0.05).

The results revealed a significant difference in hypertension 
prevalence between BMI categories, with the obese group ex-
hibiting a higher percentage (21.62% vs. 6.35%, p=0.003).

Furthermore, the incidence of falls in the last 12 months was 
significantly higher among people with obesity than their nor-
mal-weight counterparts (11.43% vs. 0.80%, p=0.015). A higher 
percentage of people with obesity reported balance problems 
(13.51% vs. 4.00%, p=0.048).

Table 1: Demographic characteristics of study participants.

Demographic
Normal 
(n=126)

Obese 
(n=37)

p-Value

Age (years) 36.0±11.33 44.4±12.52 0.00065**

Height (cm) 170±9.97 155±11.24 0.90824

Sex (% male) 44.44% 59.46% -

Smoking (% of yes) 13.49% 21.62% 0.212

Diabetes (% of yes) 3.97% 2.70% 0.762

Hypertension (% of yes) 6.35% 21.62% 0.003**

Problems with balance? (% of yes) 4.00% 13.51% 0.048**

Falls in last 12 months? (% of yes) 0.80% 11.43% 0.015**

Table 2: Continuous metrics averages by BMI category.

Metric/Category Normal Obese P-values

Stride Duration (seconds) 1.101 1.108 0.627

Cadence (steps/min) 111.23 109.90 0.379

Gait Speed (m/s) 1.31 1.24 0.993

Daily Step Count (steps) 7745.97 7331.37 0.508

Double Support Time (s) 0.26 0.27 0.280

Figure 1: The MetaMotionC© (MMC) inertial measurement unit 
(IMU) developed by Mbientlab Inc. pictured as it was fitted on the 
sternal angle of patients. Figure taken from Natarajan et al. [9].

Figure 2: Data processing workflow. Flowchart describing the data 
processing workflow. MetaMotionC detects raw acceleration, gyro-
scope and magnetometer signals which are interpreted by a python 
script known as the IMUGaitPy program. This is used to extract spa-
tiotemporal gait metrics from the raw data and is obtained as a .csv 
file. Asymmetry and variability metrics can also be computed and 
information regarding these derivations can be found in Appendix 
2. Figure taken from Fonseka et al. [4].

Figure 3: Comparison of motion metrics between normal and 
obese BMI groups.
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Discussion

The objective of this prospective observational cohort study 
was to establish a comprehensive normative database for spa-
tiotemporal gait metrics across different BMI categories, with 
the intent of serving as a reference for detecting anomalies in 
gait patterns.

Our findings, revealing no significant differences in cadence, 
gait speed, stride duration, daily step count, or double support 
time between Normal and Obese BMI categories, diverge from 
existing literature that reported variations in gait dynamics with 
BMI differences [13]. For instance, in a study by involving 2809 
participants, it was demonstrated that increasing BMI is associ-
ated with decreased gait speed, and obesity significantly raises 
the likelihood of falls and related injuries [14]. This investiga-
tion into real-world gait speed in relation to frailty and handgrip 
strength revealed that gait speed metrics significantly improved 
frailty detection and handgrip strength prediction, highlighting 
a profound link between BMI, gait dynamics, and physical func-
tion [15].

Our results identified a correlation between BMI and factors 
influencing stability, specifically balance and fall risk, suggesting 
that while excess weight may contribute to declines in function-
al stability, it may not uniformly affect basic gait metrics. This 
observation suggests that the effect of obesity on physical func-
tion, especially in older adults, might be influenced by factors 
beyond BMI [15]. For example, the age differences observed 
within our BMI may have confounded our data, although one 
would generally suspect those of older age to exhibit a broad-
er and more diminished range of gait metrics, which was not 
directly observed. This complexity is further magnified by not 
directly accounting for muscle strength and physical activity 
levels in our analysis, despite their acknowledged influence on 
gait dynamics [15]. Although we previously sought to integrate 
these multifactorial aspects through the subjective and objec-
tive quality of life score (SOQOL™) (2023), it does not directly 
address the impact of BMI [16].

To further explore the impact of age on gait characteristics, 
our findings indicate age significantly influences gait metrics 
analysis across BMI categories. The obese population group was 
older on average than the normal group (p<0.01*), emphasiz-
ing age’s critical role in gait evaluation. This highlights the im-
portance of age-specific cutoffs in analyzing gait dynamics for 
a clearer understanding of how age and BMI interact with gait. 
Incorporating age-focused analysis could enrich our results, of-
fering objective insights and aligning our study with existing lit-
erature on the complex interplay between age, BMI, and gait 
dynamics [17].

The increase in fall incidents and balance problems, coupled 
with a higher prevalence of hypertension in the obese popula-
tion group, emphasize the complex consequences of obesity on 
gait and stability. This complexity is highlighted by Natarajan P 
et al.’s review on gait and mobility metric capture postopera-
tively [18] and Koinis et al.’s exploration of smartphones and 
wearable devices in mental health monitoring [19]. These stud-
ies broaden gait analysis applications, suggesting its utility in 
mental health status indication, thus advocating for expansive 
studies that encompass the interplay of age, body composition, 
and physical activity in gait and stability analysis.

Strengths, limitations, and future directions

This research provides a data-driven insight into BMI’s po-

tential effects on gait metrics, enhancing the understanding of 
the body mass-gait mechanics relationship, particularly through 
the lens of BMI-associated age, balance, and fall risk. Our exam-
ination of gait metrics across BMI categories delivers essential 
data for clinicians and researchers, contributing to the ongoing 
exploration on BMI’s influence on gait despite no direct correla-
tion in observed spatiotemporal parameters.

However, the study’s limited sample size might have restrict-
ed our ability to detect significant differences, which is a con-
cern considering the observed disparities in age and balance 
measures, hinting at adiposity-related stability impacts. This 
highlights the need for larger, more diverse, as emphasized by, 
who stressed the importance of inclusivity in research samples 
[20].

Future research may build on our findings by incorporating 
detailed body composition analyses and a broader range of bio-
mechanical measures, including those that directly assess sta-
bility and balance. Additional measures, like stride length, step 
width, energy expenditure, and joint kinetics, may clarify the 
biomechanical impact of obesity on gait and stability, as also 
suggested by the work of. Such research should consider the 
implications of age and how age-related changes in body com-
position may interact with BMI to affect gait dynamics [21].

Although this study did not find significant differences in ba-
sic gait metrics, the observed relationships with age, balance, 
and falls reinforce the multifaceted nature of the effects of obe-
sity on mobility. This study sets a foundation for future inquiries 
to refine our understanding of gait mechanics in the context of 
BMI, with the goal of enhancing gait analysis methodologies 
and clinical interventions for mobility-related conditions.

Conclusion

This study found no significant impact of BMI on gait metrics 
but identified obesity as a factor associated with age-related 
health issues, balance problems, and a higher incidence of falls. 
These insights challenge the presumed relationship between 
BMI and gait, emphasizing the need for more in-depth research 
to unravel the complex factors influencing mobility.
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